
Chaotic behavior of disordered 

nonlinear systems 

Haris Skokos 
Department of Mathematics and Applied Mathematics, 

University of Cape Town 

Cape Town, South Africa 
 

 
E-mail: haris.skokos@uct.ac.za 

URL: http://math_research.uct.ac.za/~hskokos/ 

 

 

Work in collaboration with  
Sergej Flach, Joshua Bodyfelt, Ioannis Gkolias,  

Dima Krimer, Stavros Komineas, Tanya Laptyeva, Bob Senyange 

  

 



Outline 
 

• Disordered 1D lattices:  

The quartic Klein-Gordon (KG) model 

The disordered nonlinear Schrödinger equation (DNLS) 

Different dynamical behaviors 

• Chaotic behavior of the KG model 

Lyapunov exponents 

Deviation Vector Distributions 

• Integration techniques (Symplectic integrators and 
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Interplay of disorder and nonlinearity 

Waves in nonlinear disordered media – localization or 
delocalization? 

Theoretical and/or numerical studies [Shepelyansky, PRL 

(1993) – Molina, Phys. Rev. B (1998) – Pikovsky & 

Shepelyansky, PRL (2008) – Kopidakis et al., PRL (2008) – 

Flach et al., PRL (2009) – S. et al., PRE (2009) – Mulansky & 

Pikovsky, EPL (2010) – S. & Flach, PRE (2010) – Laptyeva et 

al., EPL (2010) – Mulansky et al., PRE & J.Stat.Phys. (2011) – 

Bodyfelt et al., PRE (2011) – Bodyfelt et al., IJBC (2011)] 

Experiments: propagation of light in disordered 1d waveguide 
lattices [Lahini et al., PRL (2008)] 

Waves in disordered media – Anderson localization [Anderson, 

Phys. Rev. (1958)]. Experiments on BEC [Billy et al., Nature (2008)]  



The Klein – Gordon (KG) model 

  4

l

2N
22l l

K l l+1 l

l=1

p ε 1
H = + u +

1
+ u u u

24
-

2 2 W

  .
 
 
 

 chosen  uniformly froml

1 3
ε ,

2 2

with fixed boundary conditions u0=p0=uN+1=pN+1=0. Typically N=1000. 

Parameters: W and the total energy E. 

The discrete nonlinear Schrödinger (DNLS) equation 
We also consider the system: 
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where   and  chosen  uniformly from   is the nonlinear parameter.l 
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Conserved quantities: The energy and the norm                      of the wave packet. 
2
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Linear case (neglecting the term ul
4/4)  

Ansatz: ul=Al exp(iωt). Normal modes (NMs) Aν,l - Eigenvalue problem:  

           λAl = εlAl - (Al+1 + Al-1) with 
2

l lλ =Wω -W - 2,    ε =W(ε - 1)



Distribution characterization 

We consider normalized energy distributions in normal mode (NM) space  

of the νth NM (KG) or norm distributions (DNLS). 

, where Aν is the amplitude 
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Participation number:  
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measures the number of stronger excited modes in zν.  

Single mode P=1. Equipartition of energy P=N.  



Scales 
Linear case:                             , width of the squared frequency spectrum: 

 

 

 

 

 

Average spacing of squared eigenfrequencies of NMs within the range of a  
 

localization volume:  

 

Nonlinearity induced squared frequency shift of a single site oscillator 

 

 
 

 

The relation of the two scales                  with the nonlinear 
frequency shift δl determines the packet evolution. 
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Different Dynamical Regimes 
Three expected evolution regimes [Flach, Chem. Phys (2010) - S. & Flach, 

PRE (2010) - Laptyeva et al., EPL (2010) -  Bodyfelt et al., PRE (2011)]  

Δ: width of the frequency spectrum, d: average spacing of interacting modes,  

δ: nonlinear frequency shift.  
 

Weak Chaos Regime: δ<d,     m2~t1/3 

Frequency shift is less than the average spacing of interacting modes. NMs are 

weakly interacting with each other. [Molina, PRB (1998) – Pikovsky, & 

Shepelyansky, PRL (2008)]. 
 

Intermediate Strong Chaos Regime: d<δ<Δ,     m2~t1/2    m2~t1/3 

Almost all NMs in the packet are resonantly interacting. Wave packets initially 

spread faster and eventually enter the weak chaos regime. 
 

Selftrapping Regime: δ>Δ 
Frequency shift exceeds the spectrum width. Frequencies of excited NMs are 

tuned out of resonances with the nonexcited ones, leading to selftrapping, while a 

small part of the wave packet subdiffuses [Kopidakis et al., PRL (2008)]. 



Single site excitations 

No strong chaos regime 

 

In weak chaos regime we 

averaged the measured 

exponent α (m2~tα) over 

20 realizations: 

 

α=0.33±0.05 (KG) 

α=0.33±0.02 (DLNS) 

 

 

Flach et al., PRL (2009)  

S. et al., PRE (2009) 

DNLS W=4, β= 0.1, 1, 4.5 KG W = 4, E = 0.05, 0.4, 1.5 

slope 1/3 slope 1/3 

slope 1/6 slope 1/6 



KG: Different spreading regimes 



Crossover from strong to weak chaos 

We consider compact initial wave packets of width L=V [Laptyeva et al., 

EPL (2010) -  Bodyfelt et al., PRE (2011)]. 

Time evolution 

DNLS KG 



Crossover from strong to weak chaos 

(block excitations) 

W=4 

 

Average over 1000 realizations! 
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α=1/3 

α=1/2 

DNLS β= 0.04, 0.72, 3.6 KG E= 0.01, 0.2, 0.75 

Laptyeva et al., EPL (2010)  

Bodyfelt et al., PRE (2011) 



Lyapunov Exponents (LEs) 

Roughly speaking, the Lyapunov exponents of a given 

orbit characterize the mean exponential rate of divergence 

of trajectories surrounding it.  

Consider an orbit in the 2N-dimensional phase space with 

initial condition x(0) and an initial deviation vector from it 

v(0). Then the mean exponential rate of divergence is:  
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v (t )1
m L C E = λ = lim ln

t v (0 )

λ1=0  Regular motion  (t-1) 

λ10  Chaotic motion 



KG: LEs for single site excitations (E=0.4) 



KG: Weak Chaos (E=0.4) 



KG: Weak Chaos 

Individual runs 

Linear case 

E=0.4, W=4 

Average over 50 realizations 

 

Single site excitation E=0.4, 

W=4 

Block excitation (L=21 sites) 

E=0.21, W=4 

Block excitation (L=37 sites) 

E=0.37, W=3 

 

 

S. et al., PRL (2013) 
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slope -1 

slope -1 

αL = -1/4 



Deviation Vector Distributions (DVDs) 

Deviation vector:   

v(t)=(δu1(t), δu2(t),…, δuN(t), δp1(t), δp2(t),…, δpN(t))  
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DVD: 



Deviation Vector Distributions (DVDs) 

Individual run 

E=0.4, W=4 

 

Chaotic hot spots  

meander through the 

system, supporting a 

homogeneity of chaos 

inside the wave packet. 

Energy  DVD 



DVDs – Weak chaos 
Individual run, L=37, 

E=0.37, W=3 

Single site excitation E=0.4, W=4 

Block excitation (21 sites) E=0.21, W=4 

Block excitation (37 sites) E=0.37, W=3 

Maximum absolute 

deviation of DVD’s mean 

position 

[ , ]
( ) max ( ) ( )

t t t
M t w t w t


 



KG: Strong chaos 

Individual run 

L=83, E=8.3, W=3  

Energy  DVD 



KG: Strong chaos 
Block excitation (37 sites) E=7.4, W=3 

Block excitation (83 sites) E=8.3, W=3 

Block excitation (330 sites) E=33.0, W=1 

Lyapunov exponent 

Characteristics of DVD 



Weak and Strong chaos 

Energy  DVD Energy  DVD 

Same disordered realization, L=37, W=3, E=0.37 and E=7.4 



Weak and Strong chaos: LEs 



Weak and Strong chaos: DVDs 

For both cases the DVD’s participation 

number remains practically constant. 



Autonomous Hamiltonian systems 

Hamilton equations of motion: 

Variational equations: 

Let us consider an N degree of freedom 
autonomous Hamiltonian systems of the 

form:  

As an example, we consider the Hénon-Heiles system: 



Symplectic Integrators (SIs) 
Formally the solution of the Hamilton equations of motion can be written 
as: 

where     is the full coordinate vector and LH the Poisson operator: X
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If the Hamiltonian H can be split into two integrable parts as H=A+B, a 
symplectic scheme for integrating the equations of motion from time t to 
time t+τ consists of approximating the operator           by HτL

e

for appropriate values of constants ci, di. This is an integrator of order n. 

So the dynamics over an integration time step τ is described by 
a series of successive acts of Hamiltonians A and B.  

OH A B i A i B

j
τL τ(L +L ) c τL d τL n+1

i=1

e = e e e + (τ )



Symplectic Integrator SABA2C 
The operator        can be approximated by the symplectic integrator 

[Laskar & Robutel, Cel. Mech. Dyn. Astr. (2001)]: 

HL
e


1 A 1 B 2 A 1 B 1 Ac L d L c L d L c L

2S A B A = e  e  e  e  e
    

with .1 2 1

1 3 3 1
c = - ,  c = ,  d =
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The integrator has only small positive steps and its error is of order 2. 

In the case where A is quadratic in the momenta and B depends only on 

the positions the method can be improved by introducing a corrector C, 

having a small negative step: 
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Thus the full integrator scheme becomes: SABAC2 = C (SABA2) C and its 

error is of order 4. 
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Tangent Map (TM) Method 

We apply the SABAC2 integrator scheme to the Hénon-Heiles system by 

using the splitting: 

with a corrector term which corresponds to the Hamiltonian function: 

 

Use symplectic integration schemes for the whole set of equations (S. & 

Gerlach, PRE (2010)  

We approximate the dynamics by the act of Hamiltonians A, B and C, 

which correspond to the symplectic maps: 



Tangent Map (TM) Method 

The system of the Hamilton’s equations of motion and the variational equations 

is split into two integrable systems which correspond to Hamiltonians A and B.  

Let 



Tangent Map (TM) Method 
Any symplectic integration scheme used for solving the Hamilton equations 

of motion, which involves the act of Hamiltonians A and B, can be extended 

in order to integrate simultaneously the variational equations [S. & Gerlach, 

PRE (2010) – Gerlach & S., Discr. Cont. Dyn. Sys. (2011)  –  Gerlach et al., 

IJBC (2012)]. 



The KG model 
We apply the SABAC2 integrator scheme to the KG Hamiltonian by using 

the splitting: 

with a corrector term which corresponds to the Hamiltonian function: 
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Summary 
• We presented three different dynamical behaviors for wave packet spreading 

in 1d nonlinear disordered lattices (KG and DNLS models): 

 Weak Chaos Regime: δ<d,     m2~t1/3 

 Intermediate Strong Chaos Regime: d<δ<Δ,     m2~t1/2    m2~t1/3  

 Selftrapping Regime: δ>Δ  

• KG model  

 Lyapunov exponent computations show that:  

• Chaos not only exists, but also persists. 

• Slowing down of chaos does not cross over to regular dynamics. 

 mLEs and DVDs show different behaviors for the weak and the strong chaos 

regimes. 

 Chaotic hot spots meander through the system, supporting a homogeneity of 

chaos inside the wave packet. 

• The behavior of DVDs can provide important information about the chaotic 

behavior of a dynamical system. 
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